Quick but effective surgery for functional mitral regurgitation secondary to aortic valve disease

Masashi Komeda, MD, PhD, Osaka and Nagoya, Japan

Severe aortic valve disease often causes secondary dilated cardiomyopathy and functional mitral regurgitation (MR). Aortic valve replacement alone may result in residual or recurrent MR.1,2 Double valve replacement is associated with a high rate of mortality, especially in patients with poor left ventricular (LV) function.2 In patients with mitral tethering, recurrent MR may occur after mitral annuloplasty.3 We have reported mitral valve repair with physiologic relocation of both anterior and posterior papillary heads of each papillary muscle (PM) to the mid-anterior annulus (papillary heads optimization [PHO]) to alleviate tethering of both the anterior leaflet (AL) and the posterior leaflet,4 a modification of Kron’s relocation. We applied this in all procedures via the aortic valve orifice (ie, often no need to open/close left atrium or annuloplasty) by introducing Langer’s concept.5

PATIENTS AND METHODS

Of 47 patients who underwent PHO surgery for functional MR between 2010 and 2016, 18 who had the dilated cardiomyopathy secondary to aortic valve disease and 14 who did not have annuloplasty were reviewed. We selected PHO when the patient had significant mitral tethering and when the patient had both anterior and posterior heads in each PM (approved by Institutional Review Board NHC201310109). When the patient had a severely dilated annulus, annuloplasty was added and the patients were not included in the analysis.

Patients’ age was 72 ± 10 years (mean ± 1 standard deviation); there were 8 men. Ten patients had aortic regurgitation, and 4 patients had stenosis. Preoperatively, the patients’ New York Heart Association
During the operation, after an aortotomy, all cusps were excised, allowing exposure of both PMs and the AL by using a long-blade retractor. A 4-0 Teflon-pleated polytetrafluoroethylene (PTFE) suture was used to connect the posterior and anterior heads in each PM, because the posterior head supports the chordae for the posterior leaflet and anterior head for AL. The PTFE suture was then passed through the subaortic curtain toward the outside of the heart and left untied for a while (Figure 1 and Video 1). Then, the aortic valve procedure was completed. After terminating the cardiopulmonary bypass, the PTFE relocation sutures were pulled/relaxed and tied under transesophageal echocardiography guidance when the tethering and the MR was zero or minimal.

RESULTS

In the operation, all patients had aortic valve procedures; 10 bioprostheses, 2 valve repairs, 1 root reimplantation, and 1 Bentall procedure. Concomitant procedures were 3 tricuspid annuloplasties and 2 ascending/arch replacements. All patients had an uneventful recovery, except for 1 patient, an 86-year-old woman with mesenteric emboli due to shaggy aorta 2 weeks postoperatively.

Postoperative echocardiography revealed an LV diastolic diameter of 53.1 ± 10.6 mm (P = .006 vs preoperatively), LV ejection fraction of 37.4% ± 16.2% (P = not significant, .10), degree of MR of 0.8 ± 0.6 (P < .001), and estimated right ventricular pressure of 32.1 ± 13.0 mm Hg (P = .017). Postoperative tethering height of the mitral valve was 4.6 ± 1.1 mm (P < .001).
Among 8 patients with more than 12 months of follow-up, there was 1 late death; 1 patient, a 71-year-old man with chronic hemodialysis, died suddenly on day 60. At 1010 ± 577 days after the surgery, LV diastolic diameter was 46.0 ± 8.1 mm (P = .070), LV ejection fraction was 60.4% ± 2.1% (P = .003), and MR degree was 1.5 ± 0.6 (P < .035). Echocardiography of a representative patient is shown in Figure 2.

DISCUSSION

In case of severe aortic valve disease with dilated cardiomyopathy and moderate functional MR, the management of MR remains controversial. We tried to perform effective double valve treatment by spending time for a single valve.

To do so, we applied the PHO method through an aortotomy to decrease the ischemic pump time; we saved approximately 40 minutes of ischemic time. We applied the method by attaching individual resuspension chorda to each PM because the patients had global LV dilatation/dysfunction and the anterior PM was dislocated.

So far, our procedure seems beneficial for those with functional MR and significant tethering secondary to aortic valvulopathy and those with a mitral annulus that is not overly dilated. Under this condition, we saved a significant amount of time. Moreover, it took less than 10 minutes to perform the PHO procedure via the aortic orifice. The procedure has another merit: accurate and effective tension control of the relocation sutures under the monitoring of transesophageal echocardiography with an off-pump beating condition.

CONCLUSIONS

The relocation method described may be one answer to the dilemma of treating functional MR secondary to aortic valvulopathy. It is in part ventricular treatment and may have a physiologic impact rather than valvular treatment, such as the M-clip. Midterm results are encouraging, and further investigation is warranted.

References